bject-Oriented
rogramming

SOFTWARE and
SOFTWARE
ENGINEERING

Software

| History of Software
Development

| Software
Engineering Paradigms and Technology

| Software
Complexity, Object-Oriented Requirements
Analysis (OORA), and Object-Oriented Design
(OOD)

bject-Oriented

rearammind —THE-NATURE OF
SOFTWARE
3 Characteristics of

Software

3 Failure Curves for
Hardware and Software

3 Software Components
3 Software Configuration

bject-Orlented THE NATURE OF

rogramming _ _ SOFTWARE
Characteristics of
Software

| Software is programs, documents, and data.

| Software is developed or engineered,; it is not
manufactured like hardware.

| Software does not wear out, but it does deteriorate.
| Most software is custom-built, rather than being
assembled from existing components.

| Software is a business opportunity.

rogramming SOFTW

Failure Curves for
Hardware and
,‘ Softwar,

"Infant "Wear
Mortality Out" \

Change

/

Failur
e
Rate

Actual

|deal

.
|

\j

Time Time
FAILURE CURVE FAILURE
FOR CURVE
HARDWARE FOR

SOFTWARE

1-4

rogramming SOFTWARE

Software
Components

| Software progers, or software systems, consist of
components.

| A set of components which comprise a logical unit of
software is called a software configuration item.

| Reuse and development of reliable, trusted software
components improves software quality and productivity.
Computer language forms:

Machine level (microcode, digital signal generators)
Assembly language (PC assembler, controllers)
High-order languages (FORTRAN, Pascal, C, Ada, ...)
Specialized languages (LISP, OPS5, Prolog, ...)
Fourth generation languages (databases, windows

pps)

333337

bject-Oriented
rogramming

THE NATURE OF

SOFTWARE
Software
Configuration
Softwar
e
Project Software
Plan :
Requiremen
i Soft
Specificatio o ewal‘
User " Design
Document
S
Software Data Code
Test Plan Structure %
and S Em—p
Procedures _ apd
Dictionar
Yy

rogramming SOFTWARE
Software

| Planning Acmﬁg u ratlee!agn Activity
m Software Project Plan m Software Desigh Documents
| Requirements Definition m Software Test Plan and
Activity Procedures
m Software Requirements m Data Structures and Dictionary
Specification | Coding and Testing Activity
m Software Test Plan and m Code
Procedures m Software Test Plan and
m Data Structures and Procedures
Dictionary | Delivery and Maintenance
m User Documents Activity

m User Documents
m Others as needed

bject-Oriented

regramming — LHSTORY OF
SOFTWARE
DEVELOPMENT

3Role of
Software

3industrial
View

bject-Oriented

. HISTOR
rogramming

Y
Role of

he explosive growt q re
speeds and capabilities at a very low
cost fuels the demand for very
complex software and increases

Desk-Top Systems
Object Orientation
Expert Systems
Neural Nets
Parallel Computing

Distributed Systems
Embedded Smarts
Low-Cost Hardware

customer expectations. Consumer Impact Fourth
Multiuser
Real-Time Era
Database .
Product Software Third
Era
Batch Oriented
Limited Distribution
Custom Software Second
Era
First
Era
1950 1960 1970 1980
1990
1-9

bject-Oriented
rogramming

Industrial
View

HISTOR
Y

| Why does it take
so long to finish a
working software
system?

| Why are
development costs so
high?

| Why can't we find
all software errors
before software is
delivered?

| How can we
measure the progress
of software
development?

| How can we
survive in the global
economy?

bject-Oriented
rogramming

SOFTWARE ENGINEERING
3 WhatPRReditbtre

Engineering?
3 Life Cycle
3 Prototyping Model
3 Spiral Model

3 Software Engineering
Capability

-11

bject-Oriented SOFTWARE
rogramming ENGINEERING

What Is Software

Analy5|s

Design rocedures

Coding Project Management
Testing Software Quality Assurance

Maintenance Software Configuration
ahagement

Measurement
Tracking

Innovative Technology Insertion

ODbject-Oriented SOFTWARE ENGINEERING)
mming PARADIGMS

:
C

e
\ 1-13)

SOFTWARE ENGINEERING A
PARADIGMS

s this model
ealistic?

Object-Oriented

:
C

e
\ 1-14

bject-Oriented SOFTWARE ENGINEERING

rogramming PARADIGMS

Start
Stop

Prototyping

Requiremen
ts
Gathering

Engineer
the
Product

Refining
the
Prototype

Building
Evaluatio \ the
n Prototype

of the
Prototyp

bject-Oriented
rogramming

Initial

SOFTWARE ENGINEERING
PARADIGMS

Require- . Risk
ments ;Iannm Analysis
Gatherin Based on
g / Customer
and Risk ARSTY93
PrOJeqt Based on
Planr?mg Initial
Planning ReGL ents
Based on Go Ko™
gustomer |ni1§)(ﬁcision
omment ‘
S NERLQEXRS
Prototype
Evaluation Engineere Toward a
Customer d Engineerin gomplete
Evaluation System g System
1-16

L

bject-Oriented SOFTWARE ENGINEERING

rogramming

PARADIGMS

Generic
Paradigmse

| System Analysis

| Software Project Planning
| Requirements Analysis

2. DEVELOPMENT PHASE

| Software Design

- coamo_@,
| Software Testing

3. MAINTENANCE PHASE

| Correction

| Adaptation

| Enhancement

bject-Oriented SOFTWARE

rogramming ENGINEERING

Software Engineering
Capability
| The ranldy ltﬁ Mﬁﬁ&“ﬁ&ﬂl@ nitineering

capability can be measured in terms of the degree to
which the outcome of the process by which software is
developed can be predicted.

m Predict the amount of time required to develop a
software artifact

m Predict the resources (number of people, amount of
disk space, etc.) required to develop a software artifact
m Predict the cost of developing a software artifact

| The process and the technology go hand in hand.

| One method of measurement is the Capability Maturity
Model for Software developed by the Software
Engineering Institute.

bject-Oriented SOFTWARE
rogramming ENGINEERING

Software Engineering
Capability
and Its Measuren

g-

Process

Igncreasm efined constantl
Process Managed -
Maturit Process

aturi easured

bject-Oriented

~SOFTWARE COMPLEXITY,
OBJECT-ORIENTED
REQUIREMENTS
ANALYSIS (OORA),
AND

OB!ECT—ORIENTED DtESIGN
Software e(alb(BTp exity of

3 The Attributes of Complex
Systems

3 Canonical Form of a Complex
System

3 On Designing Complex
Systems

bject-Oriented SOFTWARE
%rammmh erent C o mBTéWty Of
§91f ty‘!ﬁﬁﬁe system is:

completely specified or nearly so with a small set of
behawors
| completely understandable by a single person
| one that we can afford to throw away and replace with
entirely new software when it comes time to repair them or
extend their functionality
A complex software system (industrial-strength software)
is:
| one which exhibits a rich set of behaviors
| extremely difficult, if not impossible, for an individual to
comprehend all of its aspects - exceeds the average human
intellectual capacity
| one that we can NOT afford to throw away and replace
with entirely new software, so we patch it, maintain out-of-
date development environments for it, and carefully control
changes to it and its operational environment

bject-Orignted SOFTWARE

e i of°Caimiplex
§¥stems

complex system is implemented in a hierarchical
structure.
2. The determination of this hierarchy, selecting upper-level
subsystems, lower-level subsystems, and primitive
components, is relatively arbitrary, largely up to the
discretion of the designer of the system.
3. Linkages within the components of a system are usually
stronger than linkages between the components of a
system.
4. Complex systems are often composed of only a few
different classes of subsystems, although there may be
many instances of each class.
5. Working complex systems have invariably evolved from
working simpler systems. A complex system designed from
scratch has never worked and cannot be patched to make it
work.

SOFTWARE

/—Cgbject-Orignted
rogrammipg
anonical Form of’a €Complex

System

Classes

Object

@é

M/@%

\ﬁfﬂ

Class Structure = "kind of"

hierarchy

Object Structure = "part of"

hierarchy

1-23

bject-Oriented
ro rammmg

SOFTWARE

n Designing Complex
ﬁzgmw is - the disciplined approach used to

Design - the disciplined approach used to devise a solution to

a problem

The Purpose of Design

To construct a system that:

| satisfies a given specification

| conforms to limitations of the
target

| meets constraints on performance
and resource usage

| satisfies a given set of design
criteria on the artifact

| satisfies restrictions on the design
process itself, such as cost and
schedule

Elements of

Design
Notation - the
language of expression
IProcess - the steps
taken for the orderly
construction of the
design

Tools - the artifacts
that support the
design process by
reducing the level of
effort

1-24

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

